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Abstract

In the ultimatum game two players are offered the chance to share a prize (e.g. money).
All that is needed is for them to agree on the division. One player makes an offer which,
if accepted, is the split but, if rejected, both payers get nothing. The strategies predicted
by standard game theory is to offer very little and accept anything. Humans, however, in
both roles, usually prefer a fairer split. In this paper we study the ultimatum game within
the framework of evolutionary game theory to see if strategies closer to those observed in
reality can emerge.
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1 Preliminary

1.1 The ultimatum game

The ultimatum game is a 2-player game in which a prize e.g. (and most commonly in
experiments) a sum of money is shared if a split can be agreed. The first player (the pro-
poser) proposes a split. The second player (the responder) can either accept or reject the
offer. If the offer is accepted the players keep those splits whereas if the offer is rejected
both players get nothing.

The game was introduced by Güth et al [1] in 1982 and has since, along with the prisoner’s
dilemma, become a ”prime showcase of apparently irrational behaviour” [3]. According to
game theory the ’rational’ way for the responder to play is to accept any offer (no matter
how small) as the responder has simply an option between a) the offer i.e. something and
b) nothing. The rational proposer who expects the responder to behave rationally should
therefore offer the responder a low share.

It has, however, been demonstrated that people do not play the game rationally. Most
proposers offer a fairer share. Experimental results show that around 60-80% offer frac-
tions between 0.4 and 0.5 and only 3% offer less than 0.2 . This seems like a reasonable
strategy given that around 50% of responders reject splits offering less than one-third of
the total. See [5] [6] [7] [9] [8] [10] [12] [13] [11].

Experimental data has also demonstrated that increasing the stake size has little effect on
player’s strategies. See e.g. [14] where the experiment was done by survey in Australia but
even more convincing see [11] where the game was played in Indonesia with stake sizes up
to three times the average monthly expenditure.

The extensive studies have shown similar behaviour across a range of different circum-
stance and cultural environments (e.g. Jerusalem, Llubljana & Pittsburgh [7] and Yo-
gyakarta Indonesia [11]). Whilst this is evidence that culture does not have a significant
influence on ultimatum game behaviour this has been questioned, more recently, by an
experimental study in a non-industrialised society, specifically amongst the Machiguenga
people in the Peruvian Amazon which suggests that cultural differences may greatly in-
fluence economic behaviour [16]. Amongst the Machiguenga the mean offer was only 0.26
and responders almost always accepted offers less than 0.2.

In a biological context, the ultimatum game could describe reward sharing in advance
of a task between two individuals where the dominant one issues a ’take it ir leave it’
ultimatum. The game could also reflect instances of resource sharing and allocation where
if agreement is not reached the opportunity may be lost (e.g. the food might run away).
”Hence, while the experimental situation of an isolated, anonymous ultimatum game is
somewhat artificial, it is very likely that situations similar to it have shaped the fairness
instinct of animals and humans for millions of years” [4]. It has been shown e.g. that
inequity aversion is displayed by brown capuchin monkeys (Cebus Capella) who seemed
to respond negatively to unequal reward distribution in exchanges with a human experi-
menter [15].
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Whether the relevant behaviours are acquired through biological reproduction or by so-
cial learning and cultural imitation a useful framework to study evolving strategies is
evolutionary dynamics and evolutionary game theory. The evolutionary dynamics of the
ultimatum game will be reviewed in this paper using both evolutionary/genetic algorithms
and replicator equations. A broad aim is to investigate whether so-called ’fair’ strategies
can evolve in populations made up of individuals looking to maximise their rewards.
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2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are optimisation algorithms that apply mechanisms of bi-
ological evolution (in this paper reproduction, selection and mutation) to find solutions.
EAs are applied in many diverse fields and seem an obvious application in this paper as
the process of change is most likely biological in which case the mechanisms would be as
in evolutionary biology but if the process of change of behaviour is social the EA would
still be a useful framework and the mechanisms would represent imitation, learning and
variation. We will apply EAs to populations in a number of environments to study how
behaviour might evolve.

2.1 Random encounters in a well-mixed population

For simplicity suppose we take the sum to be divided as unity. Strategies of individuals
in the population are given by two parameters p and q both on the interval [0, 1].
p denotes the amount offered if proposing.
q denotes the minimum accepted if responding.

Suppose that in an interaction between a player using strategy S1 = (p1, q1) and a player
using strategy S2 = (p2, q2) each has an equal chance of playing either role. The expected
value of the pay-off for the S1 player against the S2 player, E(S1, S2) is

E(S1, S2) =
1

2
×


1− p1 + p2 if p1 ≥ q2 and p2 ≥ q1

1− p1 if p1 ≥ q2 and p2 < q1

p2 if p1 < q2 and p2 ≥ q1

0 if p1 < q2 and p2 < q1

(2.1)

Consider the following environment for studying the evolutionary dynamics in well-
mixed population:
• Population - There is a population of N individuals.
• Interactions - In each generation every player interacts with every other player in the
role of both proposer and responder.
• Fitness - The fitness of an individual is equal to the sum of the payoffs accumulated
from each interaction.
• Selection - Players leave offspring in proportion to their fitness i.e. the probability of
each child taking the strategy of parent i is given by Fi

N∑
j=1

Fj

where Fi denotes fitness of the

ith individual. This is known as roulette wheel selection.
• Mutation - Offspring inherit the parent’s strategy subject to a small mutation. If pi and
qi are the parent’s strategies, the child’s strategies will be on the interval [pi − ε

2 , pi + ε
2 ]

and [qi − ε
2 , qi + ε

2 ] with ε a small mutation parameter.

Figure 2.1 shows how the evolution of (initially random) strategies of one simulation of a
population of 100 individuals with ε = 0.01 evolve towards the rational. Table 2.1 shows
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the results of simulations run with various mutation errors, ε. With small mutation er-
rors the population favours the rational however larger mutation errors result in non-zero
acceptance levels which creates selective pressure on the proposer away from the rational.
These results are consistent with the study by Page et al in [4].

Figure 2.1: The left figure shows the time evolution of the average offer and acceptance
level in a simulation of the non-spatial, well-mixed ultimatum game. Initially the 100
players each have random offer and acceptance levels. Everyone plays everyone else
(both as proposer and responder) and the number of offspring of each individual is
proportional to his total pay-off. The mutation error, ε, is 0.01. The time scale is

logarithmic to illustrate the long term (though noisy) convergence. The right figure
shows the standard deviation of the population strategies.

ε p̄ q̄

0.001 0.0807 ±0.0224 0.0637 ±0.0245

0.002 0.0926 ±0.0382 0.0704 ±0.0386

0.01 0.1065 ±0.0296 0.0469 ±0.0275

0.02 0.1452 ±0.0265 0.0571 ±0.0222

0.1 0.2683 ±0.0336 0.0989 ±0.0244

0.2 0.3224 ±0.0403 0.1285 ±0.0243

Table 2.1: Summary of results in the non-spatial, well mixed ultimatum game. The table
shows the mean offer and acceptance level in a population of 100 individuals with various
mutation errors, ε. All individuals have random initial strategies. The values shown are
averages over time, sampled at 103 generation intervals between 104 generations and 105

generations. The standard deviations are of the sample and are a measure of how stable
the population strategies have become. The results are consistent with [4]

.

2.2 The spatial ultimatum game in one dimension

What if the population does not interact randomly and completely? If there is some social
structure to the population due to spatial arrangement how will the strategies evolve?

Consider the following spatial environment:
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• Population - There is a population of N individuals arranged on a one-dimensional ring
(or annulus).
• Interactions - In each generation every player interacts with his k nearest neighbours.
• Fitness - The fitness of an individual is equal to the sum of the payoffs accumulated
from these two interactions.
• Selection - Players leave offspring in proportion to their relative fitness in their neigh-
bourhood i.e. the probability that a child at a specific site takes the strategy of a parent in
the neighbourhood of that site is equal to the parent’s fitness divided by the total fitness
of the three players in that neighbourhood.
• Mutation - as before.

When competing for offspring in a well-mixed environment an individual’s fitness is com-
pared to the entire population. When competing for offspring in a neighbourhood a player
can affect his neighbour’s payoff and beating your neighbours is what is important for
survival. When do mutant clusters spread? Page et al in [4] showed conditions for a
mutant with strategy S2 = (p2, q2) to be likely to invade strategy S1 = (p1, q1) where
q1 ≤ p1 < q2 ≤ p2. These are shown in figure 2.2. They demonstrate why with neigh-
bourhood k = 2 we can expect to see strategies evolving that tend towards an even split.
These spatial dynamics are demonstrated in figure 2.3. Table 2.2 shows the results of
simulations done for a different neighbourhood sizes.

a) single mutant

c) cluster boundary

b) pair of mutants

Figure 2.2: Recreated from [4]. In a population of S1 = (p1, q1)
strategists, a cluster of mutants playing S2 = (p2, q2) where q1 ≤ p1 < q2 ≤ p2 are likely
to propagate if a) p2 ≤ 0.39, b) p2 ≤ 0.43, and c) p2 ≤ 0.5

5



neighbours p̄ q̄

2 0.4170 ±0.0056 0.3905 ±0.0616

4 0.2948 ±.0865 0.2742 ±0.0903

8 0.2372 ±0.0287 0.2208 ±0.0903

Table 2.2: Summary of results in a one-dimensional ring of different neighbourhood sizes.
The table shows the mean offer and acceptance level in a population of 100 individuals
with different neighbourhood sizes. All individuals have random initial strategies. The
values shown are averages over time, sampled at 103 generation intervals between 104

generations and 105 generations. The standard deviations are of the sample and are a
measure of how stable the population strategies have become. k = 2 is consistent with [4]
but k = 4 and k = 8 are lower. A linear extrapolation from [4] suggests we should expect
proposal strategies at about 0.39 for k = 4 and 0.28 for k = 8. In that paper generations

were sampled between 105 and 106 generations so the populations in the simulations
tabled here may still be climbing. Given a little more time it would be useful to run the

simulations again and for longer to investigate.
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Figure 2.3: The figures show snapshots of strategies evolving in a one-dimensional ring.
Initially the strategies are arranged randomly. After 100 generations the population has

arranged itself into a number of separate clusters. Much later one of the clusters has
dominated and clustering occurs on a small scale as the players evolve towards fair

strategies. The mutation error ε is 0.001.

2.3 The spatial ultimatum game in two dimensions

Now let us look at the evolution of strategies in a two-dimensional spatial environment.
Consider an environment with evolutionary dynamics as in the one-dimensional case but
with the population arranged on a two-dimensional square lattice. Each player interacts
with his neighbours above, below, to the left and to the right. This is known as a Von-
Neumann neighbourhood. Also the lattice folds around to form a torus so that there are
no boundaries and each player has the same size neighbourhood.

When do mutant clusters spread? Page et al in [4] examined a 3× 3 cluster and showed
the condition for a mutant with strategy S2 = (p2, q2) to be likely to invade strategy
S1 = (p1, q1) where q1 ≤ p1 < q2 ≤ p2 is p2 ≤ 0.342. This cluster is shown in figure 2.4.
We can therefore expect clusters to form and grow up to around this level. Figure 2.5
shows snapshots of the evolution of the population strategies in which we can see clusters
forming and spreading. Table 2.3 shows the results of simulations done for a different
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neighbourhood sizes. The results are all consistent with [4] As in the one-dimensional
environment strategies away from zero are able to evolve.

Figure 2.4: Recreated from [4]. In a population of S1 = (p1, q1)
strategists, a 3 × s cluster of mutants (black cells) playing S2 = (p2, q2) where q1 ≤ p1 <
q2 ≤ p2 are likely to propagate if p2 ≤ 0.342.

grid size p̄ q̄

10 x 10 0.2435 ±0.0381 0.2240 ±0.0392

50 x 50 0.3088 ±0.0130 0.2836 ±0.0164

100 x 100 0.3328 ±0.0109 0.3046 ±0.0117

Table 2.3: Summary of results on two-dimensional grids of various sizes. The table shows
the mean offer and acceptance level on various grid sizes e.g. the 10x10 contains 100

individuals. All individuals have random initial strategies. The values shown are
averages over time, sampled at 103 generation intervals between 104 generations and 105

generations. The standard deviations are of the sample and are a measure of how stable
the population strategies have become. These results are all consistent with [4].
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Figure 2.5: The figures show snapshots of strategies evolving on a two-dimensional grid.
The colour scale is a heat colour map - the range [0, 1] is charted as dark blue through to

red. Importantly for the figures below lighter means higher. Initially all the strategies
are random. Early on selection favours low offer and acceptance levels. Once clusters
establish themselves they are able to spread and to evolve higher strategies with the

acceptance levels lagging a little behind the offers.
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2.4 The ultimatum game on a graph

What if the spatial distribution of the social structure is less ordered?

We have seen that a spatial distribution where individuals are constrained to interact
with, and imitate, only their neighbours can lead to fairer strategies. We have also seen
that the topology of the environment makes a difference - the k = 4 (four neighbour) case
on the one-dimensional ring resulted in fairer strategies than k = 4 on the two-dimensional
lattice. Is the evolution of fairer strategies driven purely by the spatial distribution or is
it due, in part, to the restriction of interactions to a small number of neighbours? We can
examine this question by studying the evolutionary dynamics of the game on a random
regular graph where each vertex represents an individual and edges denote interactions.

The regular graph has the following properties:
• Loops are not allowed i.e. an individual does not play against himself.
• Multiple edges are not allowed i.e. individuals play each other at most once per gener-
ation.
• Each vertex has the same number of edges i.e. individuals play the same number of
games.
The graph can be represented by an adjacency matrix A = [aij ] where:
if aij = 1 then i↔ j i.e. i and j interact, and
if aij = 0 then i and j do not interact.

The algorithm for generating the random graph graph works as follows: [18] [19]
• Begin with a regular graph with k edges connected to the nearest neighbours i.e. a ring
with k neighbours.
• Randomly select a pair of edges A↔ B and C ↔ D.
• Rewire so that A↔ D and C ↔ B.
• If one or both of these edges already exist the step is aborted and a new pair chosen.
• Repeat rewiring a number of times. Here we have used 4N times.

2.4 shows the results of simulations of a population of 100 individuals arranged randomly
on a regular graph. Evolutionary dynamics are as in the one- and two-dimensional ordered
cases. The less ordered structure makes it difficult for clusters to form - your neighbours
neighbour may be far away from you. This reduces the impact of kin selection and makes
it more difficult for fair strategies to evolve.
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neighbours p̄ q̄

2 0.4170 ±0.0056 0.3905 ±0.0616

4 0.1026 ±0.0398 0.0841 ±0.0378

8 0.1075 ±0.0174 0.0886 ±0.0163

Table 2.4: Summary of results of the ultimatum game on a graph of different
neighbourhood sizes. The table shows the mean offer and acceptance level in a

population of 100 individuals for k = 2, 4 & 8. All individuals have random initial
strategies. The values shown are averages over time, sampled at 103 generation intervals
between 104 generations and 105 generations. The standard deviations are of the sample
and are a measure of how stable the population strategies have become. k = 2 is taken
from 2.2 as any connected regular graph of degree 2 is planar and equivalent to a ring.

The k = 4 and k = 8 case have significantly lower strategies than the k = 2 case
reflecting the importance of kin selection. The results are consistent with [17] where the
effect of the topology of the spatial environment was studied. Note that the k = 4 case is

slightly lower than the k = 8 case. This may again be due to the population requiring
more generations to settle down - the higher standard deviation suggests this is the case,

however it would be useful to run the simulations again and for longer to investigate.

2.5 Cost of interaction and refusal to play

What would happen if individuals were allowed to be more selective about who they in-
teracted with? If we imagine that each interaction involves a small cost (this could be a
set-up cost or simply a time opportunity cost) individuals would prefer not to incur this
cost if they are not likely to reach agreement.

Consider the following evolutionary dynamics:
• Population - There is a population of N individuals.
• Interactions - From the population of N individuals a proposer and responde are selected
randomly. If they do not reach agreement they will black ball each other with probability
σ. If they have previously black balled each other they will not play and thereby not incur
the interaction cost, c. Per generation there are m×N interactions - enough for repeated
interactions between individuals.
• Fitness - We now have the possibility of negative payoffs that need to be taken into
account. We could use a linear map from the full range of possible payoffs to positive i.e.
[zmin, zmax]→ [0, 1] where
zmin is the payoff of the individual selected every time and always incurring a cost, and
zmin is the payoff of the individual selected every time and always scoring 1.
The possibility of these extremes occurring are obviously remote so to avoid slow conver-
gence (tight grouping of fitness scores will mean weak selection) we will calculate a more
realistic high, low range as follows:
the probability of an individual being selected in in each of the mN interactions is 2

N .
This forms the binomial distribution

P(X = k) =

(
mN

k

)(
2

N

)k (
1− 2

N

)mN−k
, k = 0, 1, ..., nM

where X is the number of interactions an individual is selected for in a generation. We
can use the cumulative distribution function to find with say a 90% confidence that an
individual will not play more than X̃max games. The adjusted high, low payoff range is
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then:
z̃min = X̃max × (−c)
z̃max = X̃max

• Selection - Selection is as in the well-mixed environment i.e. individuals compete for off-
spring with the entire population. Any individuals with negative fitness do not reproduce.
• Mutation - as before

The social structure introduced here was not able to encourage ’fair’ behaviour. When
a ’fairer’ player blackballs an uncooperative one the benefit derived is that in a future
interaction he will not incur the setup cost - without the setup cost they would simply
both again score zero in a future interaction. Without the setup cost the foregone payoff
if agreement is not reached is 1−p1 if proposing and p1 if responding. With the setup cost
the foregone payoff is 1−p1−c if proposing and p1−c if responding. So for blackballing, the
’fairer’ player is now c better off relative to the entire population. However the same is true
of the uncooperative player. For strategies towards even shares to evolve seemed to require
costs that are unrealistic in the context of why they were proposed. Figure 2.6 shows two
examples of time evolutions of strategies. After a few hundred generations the populations
tended to become very homogenous after which there is very little blackballing and the
evolutionary dynamics are similar to that of a population without these new drivers.

Figure 2.6: The figure shows two examples of the time evolution of strategies with cost,
c = 4. After a few hundred generations the populations become highly homogenised and

there are few blackballs. Selective pressure as in the well-mixed case drives strategies
down to close to zero.

Despite the results this could still be an interesting structure to study. A possible change
might be where other players ar able to see that a player is blackballed and this label on
the uncooperative player may cause others to refuse an interaction.
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3 Replicator Dynamics

3.1 Motivation for the standard replicator equations

The replicator equation is one of the fundamental equations of evolutionary dynamics. It
describes population dynamics where successful strategies spread, either by cultural im-
itation or biological reproduction [2] in an infinitely large, well-mixed population. They
were introduced by Taylor & Jonker in 1978 [20]. Below is a brief derivation.

In a large population each individual plays one of the strategies S1,...,Sn.
The frequencies of the n strategies are denoted by x1, ..., xn.
A = (aij)

n
i,j=1 is the game payoff matrix i.e. aij is the payoff for the pairwise encounter of

Si and Sj .

The fitness of Si = C + (Ax)i where C > 0 is a basic fitness of the population.
Each Si individual produces Si offspring (cloning) in proportion to their frequency and
fitness i.e. Si offspring ∼ xi(C + (Ax)i)
Total offspring ∼

∑
i=1

xi(C + (Ax)i) = C +Ax

The frequencies in the next generation are thus:

x′i =
xi(C + (Ax)i)

C + x ·Ax
, and so

x′i − xi =
xi(C + (Ax)i)− xi(C + x ·Ax)

C + x ·Ax
=
xi((Ax)i − x ·Ax)

C + x ·Ax

Suppose C is large in comparison to A i.e.

x′i − xi ≈ xi((Ax)i − x ·Ax)
1

C

Now choose the time scale so that the time between generations ∆t = 1
C i.e.

∆xi = xi((Ax)i − x ·Ax)∆t

If C →∞, then ∆t→ 0 and

d

dt
xi = xi[(Ax)i − x ·Ax], i = 1,...,n (3.1)

The replicator dynamics describe pure selection dynamics (ignoring stochasticity effects)
i.e. mutation is not considered. the dynamics are similar to the roulette wheel selection
used in this paper. In the replicator equations the change in frequency of a strategy is
equal to the product of it’s current frequency and relative fitness whereas in roulette wheel
selection the probability of selection is equal to the product of it’s current frequency and
relative fitness.
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We cannot apply the replicator equation to the full ultimatum game The replicator equa-
tion describes the dynamics of a game with a fixed number of discrete strategies. We
can , however, study the dynamics of a reduced form of the ultimatum game (a so-called
minigame) that captures aspects of the full game.

3.2 The mini ultimatum game

The replicator dynamics are used to examine the dynamics of games with discrete strate-
gies 1, ..., n. This is not the case with the ultimatum game but we can study a reduced
form of the game (a so-called minigame) that captures aspects of the full ultimatum game.
In the mini ultimatum game there are only two possible offers h and l (high and low).
Individuals are faced with a choice of four strategies:
S1(l, l) - offer low, accept low (’rational’)
S2(h, h) - offer high, accept high (’fair’)
S3(h, l) - offer high, accept low
S4(l, h) - offer low, accept high

Table 3.2 shows the payoff matrix A = [aij ]
4
i,j=1 where aij is the payoff i receives when

encountering j.

S1 S2 S3 S4

S1 1 h 1− l + h l
S2 1− h 1 1 1− h
S3 1− h+ l 1 1 1− h+ l
S4 1− l h 1− l + h 0

Table 3.1: Payoff matrix of the mini ultimatum game

Both S1 and S2 are Nash equilibria but S1 is also a strict Nash equilibrium and there-
fore an evolutionary stable strategy. It has been shown that if a strategy is evolutionary
stable or a strict Nash equilibrium, then the corner point of the simplex corresponding to
the population playing this strategy is an asymptotically stable fixed point. We can thus
expect to see of strategy S1.
Now S1 dominates S4 (a player looking to maximise his payoff would never choose S4 over
S1) so we can omit S4 from the game.
Also it is known that the dynamics are unaffected by altering each column by a constant
so we can deduct 1 from each column to arrive at the following simpler payoff matrix.

S1 S2 S3

S1 0 h− 1 h− l
S2 −h 0 0
S3 l − h 0 0

Table 3.2: Adjusted payoff matrix

14



3.3 Replicator equations on the mini ultimatum game

Applying the replicator equation 3.1 above to the the payoff table 3.2 above we get the
following system of ODE’s.

d

dt
x1 = x1[(h− l)x3 + (h− 1)x2 + x1x2]

d

dt
x2 = x2[−hx1 + x1x2]

d

dt
x3 = x3[(l − h)x1 + x1x2] (3.2)

As the variables are frequencies and Σ3
i=1xi = 1 we can use apply the dependency

x3 = 1− x1 − x2 to reduce the coupled system of equations of three variables to a system
of two variables and instead study the following system of ODE’s:

d

dt
x1 = x1[(l − 1)x2 + (h− l)(1− x1) + x1x2]

d

dt
x2 = x2[−hx1 + x1x2] (3.3)

Steady states and stability

The steady states of the system (where d
dtx = 0) are:

• the three pure strategies (e1, e2 and e3)(
1
0

)
- asymptotically stable (strict equilibrium),(

0
1

)
- stable non-isolated fixed point,(

0
0

)
- unstable

• all points on the x1 = 0 simplex boundary(
0
x2

)
- stable for x2 >

h−l
1−l

• and the point on the simplex boundary between S1 and S2(
1− h
h

)
- unstable

Appendix A.1 shows a more detailed analysis of the stability of each of these steady
states.
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Phase plane

S2

S1

Figure 3.1: Phase plane of the standard replicator dynamics. S1 (’rational’) is an
asymptotically stable fixed point. Solutions starting in the region above the basin

boundary towards S2 converge the x1 = 0 boundary. On this stable boundary there is
pure drift between S2 (’fair’) and S3. The x1 = 0 boundary becomes unstable below the

basin boundary so, if perturbed, solutions will converge from there to S1.

3.4 Replicator equations on graphs

As discussed above the replicator equation applies to a well-mixed population where an
individual interacts with every other individual (or has an equal likelihood of interacting
with every other individual) i.e. population structure is ignored.

Replicator dynamics in structured populations defined by graphs have been studied by
Ohtsuki & Nowak [21]. The graphs are as described in 2.4 where individuals occupy the
vertices of the graph and edges denote which individuals interact with each other. The
replicator equation can be thought of as describing the dynamics on a complete graph
where all vertices are connected to each other.

Ohtsuki & Nowak considered three different stochastic processes for their update (se-
lection) rules:
• birth-death - An individual is selected based on his fitness compared to the entire pop-
ulation.
• death-birth - A random individual dies. The neighbours compete for the empty site in
proportion to fitness.
• imitation - A random individual is chosen to revise it’s strategy and takes either his own
or one of his neighbours in proportion to fitness.
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Imitation update most closely resembles the selection used elsewhere in this paper so we
will focus on that.

Remarkably, their results showed that for games played on random regular graphs (graphs
without loops i.e an individual does not play himself, without multiple edges i.e. individu-
als face off no more than once per generation, and where each vertex has the same number
of edges, k i.e. individuals all have the same number of interactions) the derived differ-
ential equation for the k > 2 case is the replicator equation with an adjusted payoff matrix.

If A = [aij ] is the original n × n payoff matrix, the transformed payoff matrix B = [bij ]
for imitation updating is given by

bij =
(k + 3)aii + 3aij − 3aji− (k + 3)ajj

(k + 3)(k − 2)
(3.4)

We will examine the dynamics of the mini ultimatum game for the k = 3 and k = 4 cases.

3.4.1 k=3 graph

Applying the transformation 3.4 to the original payoff matrix 3.2 (with columns each re-
duced by 1) we get the following

S1 S2 S3 S4

S1 0 2h− 3
2 2(h− l) 2l − 1

2
S2 −2h+ 1

2 0 0 −2h+ 3
2

S3 2(l − h) 0 0 2(l − h) + 1
S4 −2l − 1

2 2h− 5
2 2(h− l)− 1 -1

Table 3.3: Adjusted payoff matrix for the k = 3 graph.

As before S1 dominates S4 and we arrive at the following system of ODE’s.

d

dt
x1 = x1[(2l − 3

2
)x2 + 2(h− l)(1− x1) + x1x2]

d

dt
x2 = x2[(

1

2
− 2h)x1 + x1x2] (3.5)

Steady states and stability

The stability of the steady states for the game on the k = 3 graph are identical to the
well-mixed case (i.e. standard replicator equation) for the three pure strategies but the
other two steady states have changed in some way:
For(

0
x2

)
- The stability condition is now x2 >

2(h−l)
3
2
−l

and for the point on the simplex boundary between S1 and S2(
3
2 − 2h
2h− 1

2

)
- the type of equilibrium point has changed to a saddle.

Appendix A.2 shows a more detailed analysis of the stability of each of these steady
states.
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Phase plane

S2

S1

Figure 3.2: Phase plane of the k=3 graph. The fixed point on the boundary between S1

and S2 is now a saddle point and the dynamics inside the region close to S2 have
changed. Given drift and perturbations solutions will, however, again converge to S1.

3.4.2 k=4 graph

S1 S2 S3 S4

S1 0 10
7 h−

17
14

10
7 (h− l) 10

7 l −
5
7

S2 −10
7 h+ 3

14 0 0 −10
7 h+ 5

7
S3 10

7 (l − h) 0 0 10
7 (l − h) + 1

2
S4 −10

7 l −
2
7

10
7 h−

12
7

10
7 (h− l)− 1

2 -1

Table 3.4: Adjusted payoff matrix for the k = 4 graph

d

dt
x1 = x1[(

10

7
l − 17

14
)x2 +

10

7
(h− l)(1− x1) + x1x2]

d

dt
x2 = x2[(

3

14
− 10

7
h)x1 + x1x2] (3.6)

Steady states and stability

The stability of the steady states of the game on the k = 4 graph are very similar to the
k = 3 graph. The only noteworthy change is the stability condition for the point on the

x1 = 0 simplex border which is now x2 >
10
7

(h−l)
17
14
− 10

7
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Appendix A.3 shows a more detailed analysis of the stability of each of these steady
states.

Phase plane

S2

S1

Figure 3.3: Phase plane of the k=4 graph. The dynamics are very similar to the k = 3
phase plane 3.2

3.5 Comparison with evolutionary algorithms

What if we applied the evolutionary algorithms used for the full ultimatum game to the
mini ultimatum game? In particular can we test the conclusion in [21] by looking at the
time evolution of a population structured on a graph?

Consider the evolutionary dynamics exactly as before with these modifications:
• Selection - Ohtsuki & Nowak introduced a parameter for varying the intensity of selec-
tion. If P is the sum of an individuals payoffs, the fitness of an individual is given by
F = 1−w+wP where w is the fitness intensity parameter. w = 1 is strong selection and
w → 0 is the limit of weak selection. This is similar to the basic fitness of the population
C in the derivation of the replicator equation and is realistic as the fitness of an individual
depends on many factors and not just a single game interaction. Weak selection (w � 1)
was assumed in their derivations.
• Mutation - Offspring have a small probability, µ, of mutating and when mutating an
equal chance of mutating to either of the two other strategies.

We will apply these dynamics to the well-mixed, one-dimensional ring, two-dimensional
lattice and random regular graph. In each of the cases below we have used the following
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parameters:
• h = 0.49, l = 0.01
• The selection intensity, w, is 0.01 i.e. weak selection as in [21].
• The mutation probability, µ, is 0.001 i.e. we can expect, on average, one mutation every
ten generations.

3.5.1 Well-mixed

In the well mixed environment we see the evolution of strategies exactly as per the repli-
cator equation. Figure 3.4 shows an example.

Figure 3.4: Figure shows the time evolution of mini ultimatum game strategies in a
well-mixed environment of 100 individuals. The initial strategies (artificially chosen to

highlight the dynamics) are in the region of the simplex closer to S2 (fair) than S1

(rational) where the solutions moved away from S1 towards the simplex border between
S2 and S3. As per the replicator dynamics the frequency of strategy S2 initially

increases, there follows a period of drift between S2 and S3 (corresponding to the
simplex boundary) as each strategy does as well in a population of the other. Once a

critical mass of S3 exist the S1 strategists dominate and the frequencies evolve to mostly
rational which is uninvadeable.

3.5.2 Random regular graph

The dynamics of the game on the random regular graph do appear to be as predicted by
the Ohtsuki & Nowak equations. Figure 3.5 shows an example.
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Figure 3.5: Figure shows the time evolution of mini ultimatum game strategies in a
population of 100 individuals on a k=4 random regular graph. The initial strategies are

the same as the well-mixed above and again chosen to highlight the dynamics. As
predicted by the modified replicator equation initially strategy S2 (fair) fairs better than

S1 (rational) but after a tipping point S1 dominates and cannot be invaded.

3.5.3 One-dimensional ring

In the full ultimatum game we observed that fair strategies are able to evolve when neigh-
bourhoods are small. We’ll see in this section that the evolutionary dynamics for the mini
game do not result in the ’fair’ strategy dominating. Instead the dynamics allow oscilla-
tions in frequency between all three strategies.

For the discussion on one-dimensional rings it will be useful to adopt the following short-
hand names for the three strategies:
red - ’rational’
blue - ’fair’
green - (h, l)
and we will keep this colour scheme throughout this section.

It is useful again to consider patterns of the important conflicts that govern the evolution.
Here we will just consider the two cases shown in 3.6.

a) single mutant b) cluster boundary

Figure 3.6: mutants and clusters

Some probability calculations show on the above show why we see the oscillations in
strategy frequencies. In any one generation, for:
a) single mutant invader - Except for green invading red all mutants have a better than
even chance of survival but only red invading green has a better than even chance of
spreading.
b) boundary of two clusters - Blue has a slight edge on red, blue and green are evenly
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matched and red is stronger than green.

Figure 3.7 shows the time evolution of frequencies and figure 3.8 shows snapshots at
certain time intervals for the k = 2 case in figure 3.7 which gives some insight into the
dynamics.

Figure 3.7: Evolution of frequencies in a one-dimensional ring environment for 2 and 4
neighbours. Initial strategies are randomly distributed. Frequencies in the k = 2 case are

able to oscillate with no strategy dominating the others i.e. all three strategies are
invadeable. in the k = 4 case we see that red is more dominant but blue is still able to

invade. This will become less likely as the neighbourhood size increases.
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Figure 3.8: Snapshots at various intervals of the evolving population of the k = 2 case of
figure 3.7. At 200 generations green is growing mostly by competing at cluster

boundaries with blue. At 300 generations a cluster of red has formed inside green and
would be expected to grow. At 400 generations the large green population has been
nearly wiped out in conflicts with both blue and red. There are also two significant

blue-red fronts which will evolve as a simple Markov process - red initially growing (near
it’s maximum at 800 generations), then, by generation 1000, blue fighting back and

dominating.

3.5.4 Two-dimensional lattice

In the two-dimensional continuous strategy full ultimatum game we observed that strate-
gies above 0.3 were able to evolve by clusters forming and growing. With the three strategy
min game, just as the dynamics were different in one-dimension, clusters with strategy
other than rational are not able to survive.

Figure 3.9 shows the time evolution of frequencies from random initial conditions. Ob-
serve that S1 (’rational’) is dominant and uninvadeable. Figure 3.10 has snapshots taken
at certain time intervals of this population and shows that clusters of S2 (’fair’) and S3

are unable to survive.
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Figure 3.9: Evolution of frequencies in a two dimensional lattice environment. Initial
strategies are random. Strategy S1 dominates and is uninvadeable

DISCUSSION

Figure 3.10: Snapshots of the evolution of strategies in a k=4 two dimensional lattice.
White cells are strategy S1 (’rational’), black cells are strategy S2 (’fair’) and grey cells
are strategy S3. Clusters of black and/or grey cells are able to survive invasion by white
cells. By 200 generations the greys have all but disappeared and the black cells are being
splintered by the white cells. After 400 generations no large black cell clusters will have

survived.
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4 Spatial replicator equations

4.1 Motivation

One of the observed shortcomings of the standard replicator dynamics is that spatial effects
are ignored. ”Yet the very concept of evolutionary stability involves the consideration of
migrating groups (or invaders or mutants) which produce ipso facto spatial variation” [22].
There are a number of ways in which dispersal could be incorporated into equation 3.1
but one of the most widely used is that introduced by Vickers 1989 [22]. Below is a brief
outline of that model.

When the dispersal rate is independent of strategy the continuous-time and -space model
suggested is

∂pr
∂t

= pr[(Ap)r − p ·Ap] +D∇2pr, r = 1,...,m (4.1)

where
pr = pr(x, t) is the frequency of strategy r,
x is the position vector,
D is the dispersal rate,
∇2 is the Laplacian, and
m is the number of strategies.

This is the heat diffusion

To allow for strategy dependant dispersal rates Vickers introduced number (or number
density) and proposed the following extended model:

∂nr
∂t

= nr[
(An)r
N

− n ·An
N2

] +Dr∇2nr, r = 1,...,m (4.2)

where
nr = nr(x, t) is the population density of the r-strategists at position x and time t,
pr = nr

N is the frequency of strategy r,

N = N(x, t) =
m∑
r=1

nr is the total number density, and

Dr is the dispersal rate of the r-strategists.

Note that

∂N

∂t
=
∑
r

∂nr
∂t

=
∑
r

nr[
(An)r
N

− n ·An
N2

] +
∑
r

Dr∇2nr

=
∑
r

Dr∇2nr

So the total number of individuals can only change by migration across the boundary.
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The boundary conditions chosen are usually the zero Neumann condition so that there is
no net population flow into or out of the region. Instead in the numerical calculations that
follow we will apply the spatial replicator equation to an annulus in the one-dimensional
case and a torus in the two-dimensional case so there is no need for boundary conditions.

4.2 Strategy independent dispersal - one space dimension

Applying 4.2 to the mini ultimatum game for the one-dimensional case gives

∂pr
∂t

= fr(p) +D
∂2pr
∂x2

, r = 1, 2, 3

with fr = pr[(Ap)r − p ·Ap] i.e.

f1 = p1[(h− l)p3 + (h− 1)p2 + p1p2]

f2 = p2[−hp1 + p1p2]

f3 = p3[(l − h)p1 + p1p2] (4.3)

As before we can use p3 = 1− p1 − p2 to reduce this system to the following:

∂pr
∂t

= fr(p) +D∇2pr, r = 1, 2

f1 = p1[(l − 1)p2 + (h− 1)(1− p1) + p1p2]

f2 = p2[−hp1 + p1p2] (4.4)

Discritising the solution on a two-dimensional grid with space and time indices denoted
respectively by i and j we can use the forward time finite difference approximation

∂p

∂t
≈ pi,j+1

r − pi,jr
∆t

(4.5)

and the central space finite difference approximation

∂2p

∂x2
≈ pi+1,j

r − 2pi,jr + pi−1,j
r

(∆x)2
(4.6)

to assemble the following forward marching scheme to solve numerically.

pi,j+1
r = pi,jr + ∆tf i,jr +D

∆t

(∆x)2
(pi+1,j
r − 2pi,jr + pi−1,j

r ) (4.7)

The scheme is stable for D ∆t
(∆x)2

< 1
2 so the discritisations must be chosen accordingly.

Figures 4.1 to 4.6 show the results for different dispersal rates. The axes show the dis-
critisation steps rather than dimension units. The axes intervals are (0, 100) for space
and (0, 10) time but these are quite arbitrary and are related to the parameter D. High
diffusion is analogous to well-mixed and the population evolves rapidly towards the ra-
tional. Lower dispersal rates are analogous to a spatial environment in which individuals
interact with a neighbourhood. In such an environment wave patterns can emerge. The
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wave patterns are, however, temporary as no matter the diffusion rate the strategies will
ultimately evolve to the rational.

Figure 4.1: High diffusion (D = 5). High diffusion is analogous to well-mixed and thus
the population evolves quickly to the rational.

Figure 4.2: Medium diffusion (D = 1). Clear wave patterns are beginning to emerge.

Figure 4.3: Medium diffusion (D = 1). The figure is a cross section of figure 4.2 at t = 8
or at the 800th discritisation step and shows a clear wave pattern.
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Figure 4.4: Low diffusion (D = 0.1). Low diffusion is analogous with interactions in a
small neighbourhood. The population evolves slower towards rational and clear wave

patterns have emerged

Figure 4.5: Low diffusion (D = 0.1). The figure is a cross section at t = 10 i.e. at the
end of fig 4.4

Figure 4.6: The figure shows the low diffusion case (D = 0.1) extended to t = 20 to
demonstrate that solutions still converge to the rational
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Diffusion of a cluster

What happens if we begin with a single strong cluster of ’rationals’ in a population mad
mostly of ’fair’ players?

Figure 4.7: The figures show that with either high or low diffusion the strategies will
ultimately converge to the rational. The left figure used D = 10 and t = 150. The right
figure used D = 0.1 and t = 400. The lower D requires many more discritisation steps

for stability.

4.3 Strategy independent dispersal in two space dimensions

Adapting the one-dimensional case to two dimensions gives the following system:

∂pr
∂t

= fr(p) +D(
∂2pr
∂x2

+
∂2pr
∂y2

), r = 1, 2 (4.8)

with fr as before.

We now discritise the solution on a three-dimensional lattice denoting the x-space, y-space
and time indices respectively by i, j and k. Using the same finite difference approximation
for time i.e.

∂p

∂t
≈ pi,j,k+1

r − pi,j,kr

∆t
(4.9)

and the two-dimensional central space finite difference approximation i.e.

(
∂2

∂x2
+

∂2

∂y2
)p ≈ pi+1,j,k

r − 2pi,j,kr + pi−1,j,k
r

(∆x)2
+
pi,j+1,k
r − 2pi,j,kr + pi,j−1,k

r

(∆y)2
(4.10)

we assemble the following forward marching scheme to solve numerically. ∆s denotes
the distance between mesh points for both the x and y axis having chosen them to be
identical.

pi,j,k+1
r = pi,j,kr +∆tf i,j,kr +D

∆t

(∆s)2
(pi+1,j,k
r +pi−1,j,k

r −4pi,j,kr +pi,j+1,k
r +pi,j−1,k

r ) (4.11)
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Figures 4.8 and 4.9 show the results for different dispersal rates. Again, as in one-
dimensional space the solutions converge to the rational but wave patterns emerge as
the population evolves.

Figure 4.8: High diffusion. Figure shows the the frequency of strategies at the final time
step for D = 0.1

Figure 4.9: Lower diffusion. Figure shows the frequency of strategies at the final time
step for D = 0.05

4.4 Strategy dependant dispersal

There seems to be no valid reason why any of the three strategies would different dispersal
rates, however, if we apply different dispersal rates it does seem that more stable waves
can form. Figure 4.10 shows an example. The granularity of the charts is not very good
but clearly small clusters of the ’fair’ strategy are stable.
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Figure 4.10: Figure shows potentially stable wave patterns emerging with different
dispersal rates - D2 � D1
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5 Summary and further areas of interest

An evolutionary approach to the ultimatum game in Ch2 demonstrated that, as long as
mutations are small, the strategies of a population who encounter each other randomly
will tend to close to zero (sec 2.1) i.e. individuals ultimately display ’rational’ behaviour.

When the population has some structure and the concept of neighbourhood is introduced
’fair’ behaviour only evolves when the neighbourhood is closely knit enough for kin se-
lection to have an impact. We observed in (sec 2.4) that where the neighbourhood was
arranged randomly on a graph the strategies tend towards the rational quickly with in-
creasing neighbourhood size, however in (sec 2.2) and (sec. 2.3) we observed that with the
neighbourhood arranged spatially and tightly knit fairer strategies can evolve. This may
be mirrored by the way human populations for much of their existence have lived in small
communities where an individual with whom your neighbour interacts is likely to interact
with you.

We also looked at whether fairer strategies could evolve when individuals could label
others as ’unfair’ and not interact with them. Whilst parameters were kept to reasonable
levels players ultimately tended towards the ’rational’. The notions of labels, reputations
and memory could be explored in much greater detail.

In Ch3 we applied one of the fundamental tools of evolutionary game theory (the replicator
equation) to the mini ultimatum game in a well-mixed environment and on graphs. These
were compared to, and showed consistency with, the evolutionary algorithms in Ch2. We
observed that it is more difficult for ’fair’ strategies to evolve in a spatial context in the
mini game than the full game.

Finally in Ch4 we studied the spatial replicator equation applied to the mini ultimatum
game in one- and two-dimensional space. We observed that wave patterns can emerge
between fair and rational but that ultimately the population diffuses to the rational.

The replicator equation is the standard framework used to study the evolutionary dy-
namics of a game with a fixed number of strategies. However we have seen that the
evolutionary dynamics of the mini game are not quite the same as the full game so it
would be useful to use a continuous strategy model. An adaptive dynamics framework has
been introduced by Nowak & Sigmund [24] which allows for continuous strategy games
but assumes that all individuals in the population play the same strategy. If a mutant
can invade the whole population adopts the mutant’s strategy. This framework has been
applied to the ultimatum game by Page & Nowak [25] where interestingly it was shown
that fairness evolves if a small fraction of players offer their acceptance level.
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A Stability analysis of the replicator dy-
namics

A.1 Standard replicator dynamics

The Jacobian of the 2D ODE system is

J =

(
(l − 1)x2 + (h− l)(1− 2x1) + 2x1x2 (l − 1)x1 + x2

1

−hx2 + x2
2 −hx1 + 2x1x2

)
Applying the Jacobian at each of the steady states we see the following:
In the below T stands for trace and D for determinant.

J(1,0) =

(
−2(h− l) l

0 −h

) T = −3h+ 2l < 0
D = 2h2 − 2hl > 0
⇒ stable

J(0,1) =

(
h− 1 0
1− h 0

) T = h− 1 < 0
D = 0
⇒ stable non-isolated fixed point

J(0,0) =

(
h− l 0

0 0

) T = h− l > 0
D = 0
⇒ unstable

J(0,x2) =

(
(l − 1)x2 + h− l 0

−hx2 + x2
2 0

) T = (l − 1)x2 + h− l
D = 0
⇒ stable for x2 >

h−l
1−l

J(1−h,h) =

(
l(1− h) h(h− l − 1) + l

0 h(1− h)

) T = (h+ l)(1− h) > 0
D = lh(1− h)2

⇒ unstable

A.2 Replicator dynamics on a k=3 imitation graph

The Jacobian of the 2D ODE system is

J =

(
(2l − 3

2)x2 + 2(h− l)(1− 2x1) + 2x1x2 (2l − 3
2)x1 + x2

1

(1
2 − 2h)x2 + x2

2 (1
2 − 2h)x1 + 2x1x2

)
Applying the Jacobian at each of the steady states we see the following:
As before T stands for trace and D for determinant.

J(1,0) =

(
2(l − h) 2l − 1

2
0 1

2 − 2h

) T = 1
2 + 2l − 4h < 0

D = 2(l − h)(1
2 − 2h) > 0

⇒ stable node
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J(0,1) =

(
2h− 3

2 0
3
2 − 2h 0

) T = 2h− 3
2 < 0

D = 0
⇒ stable non-isolated fixed point

J(0,0) =

(
2(h− l) 0

0 0

) T = 2(h− l) > 0
D = 0
⇒ unstable

J(0,x2) =

(
(2l − 3

2)x2 + 2(h− l) 0
(1

2 − 2h)x2 + x2
2 0

) T = (2l − 3
2)x2 + 2(h− l)

D = 0
⇒ stable for x2 >

2(h−l)
3
2
−2l

J( 3
2
−2h,2h− 1

2
) =

(
−4lh+ 3l + h− 3

4 h(4h− 4l − 3) + 3l
0 h(4− 4h)− 3

4

)

.
D < 0
⇒ saddle

A.3 Replicator dynamics on a k=4 imitation graph

The Jacobian of the 2D ODE system is

J =

(
(10

7 l −
17
14)x2 + 10

7 (h− l)(1− 2x1) + 2x1x2 (2l − 3
2)x1 + x2

1

( 3
14 −

10
7 h)x2 + x2

2 ( 3
14 −

10
7 h)x1 + 2x1x2

)
Applying the Jacobian at each of the steady states we see the following:
As before T stands for trace and D for determinant.

J(1,0) =

(
10
7 (l − h) 10

7 l −
3
14

0 3
14 −

10
7 h

) T = 3
14 + 10

7 l −
20
7 h < 0

D = 10
7 (l − h)( 3

14 −
10
7 h) > 0

⇒ stable node

J(0,1) =

(
10
7 h−

17
14 0

17
14 −

10
7 h 0

) T = 10
7 h−

17
14 < 0

D = 0
⇒ stable non-isolated fixed point

J(0,0) =

(
10
7 (h− l) 0

0 0

) T = 10
7 (h− l) > 0

D = 0
⇒ unstable

J(0,x2) =

(
(10

7 l −
17
14)x2 + 10

7 (h− l) 0
( 3

14 −
10
7 h)x2 + x2

2 0

) T = (10
7 l −

17
14)x2 + 10

7 (h− l)
D = 0

⇒ stable for x2 >
10
7

(h−l)
17
14
− 10

7
l

J( 17
14
− 10

7
h, 10

7
h− 3

14
) =

(
−100

49 lh+ 85
49 l + 15

49h−
51
196 h(100

49 h−
100
49 l −

85
49) + 85

49 l
0 h(100

49 −
100
49 h)− 51

96

)
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.
D < 0
⇒ saddle
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B Samples of code used to generate re-
sults

B.1 One-dimensional spatial ultimatum game

c l e a r a l l ; c l c
t i c

% Parameters
n=100; % p la ye r s
nbrs =8; % neighbours
m=10ˆ4; % gene ra t i on s
w=1; % s e l e c t i o n s t r ength
x =0.001; % mutation f a c t o r
output=’ chart ’ ;
s amp l e s t a r t =10ˆ4;
sample in t =10ˆ3;

% I n i t i a l s t r a t e g i e s
P=rand (1 , n ) ; % poposer
Q=rand (1 , n ) ; % responder

% Pa i r i ng s
A=spar s e (n , n ) ;
f o r k=1: nbrs /2

A=spar s e (A+diag ( ones (1 , l ength ( diag (A, k ) ) ) , k ) . . .
+diag ( ones (1 , l ength ( diag (A, n−k ) ) ) , n−k ) ) ;

end
A=A+A’ ;

% Play game through m gene ra t i on s
f o r k=1:m

c l c ; k
% INITIALISE FITNESS VECTOR
F=ze ro s (1 , n ) ;

% GAME
f o r i =1:n

f o r j =1:n
Ftmp=ze ro s (1 , n ) ;
i f A( i , j )==1

Ftmp( i )=( f l o o r (P( i )−Q( j ))+1)∗(1−P( i ) ) ; % i i s prop .
Ftmp( j )=( f l o o r (P( i )−Q( j ))+1)∗P( i ) ; % j i s re sp .

end
F=F+Ftmp ;

end
end

% SELECTION
f o r i =1:n

Atmp=A( i , : ) ;
Atmp( i )=1;
Fi=Atmp.∗F;
i f sum( Fi )==0; Fi=Atmp.∗ ( 1 / ( nbrs +1)) ; end
Fi=1−w+w∗Fi ;
prob=Fi /sum( Fi ) ;
odds=cumsum( prob ) ;
s e l e c t i o n=f i n d ( f u l l ( odds)>=rand , 1 ) ;
Ps ( i )=P( s e l e c t i o n ) ;
Qs( i )=Q( s e l e c t i o n ) ;

end

% OUTPUT
switch output
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case ’ chart ’
OutP( k)=mean( Ps ) ;
OutQ( k)=mean(Qs ) ;
StdP ( k)=std ( Ps ) ;
StdQ( k)=std (Qs ) ;

case ’ tab le ’
i f k==samp l e s t a r t

OutP(1)=mean( Ps ) ;
OutQ(1)=mean(Qs ) ;

end
i f (k>s amp l e s t a r t )&&(mod(k , sample in t )==0)

OutP( end+1)=mean( Ps ) ;
OutQ( end+1)=mean(Qs ) ;

end
end

% MUTATION
mutateP=(x/2)∗(1−2∗ rand (1 , n ) ) ;
mutateQ=(x/2)∗(1−2∗ rand (1 , n ) ) ;
Pm=min (max( Ps+mutateP , 0 ) , 1 ) ;
Qm=min (max(Qs+mutateQ , 0 ) , 1 ) ;

% NEXT GEN
P=Pm;
Q=Qm;

end
toc

% Display
switch output

case ’ chart ’
p=semi logx (OutP ) ; s e t (p , ’ Color ’ , ’ red ’ ) ; yl im ( [ 0 1 ] ) ; hold
q=semi logx (OutQ ) ; s e t (q , ’ Color ’ , ’ blue ’ ) ;
l=legend ( ’ mean o f f e r ’ , ’ mean response ’ ) ;
s e t ( l , ’ Pos i t ion ’ , [ 0 . 5 6 0 .78 0 .3 0 . 1 ] )
f i g u r e
p=semi logx ( StdP ) ; s e t (p , ’ Color ’ , ’ red ’ ) ; yl im ( [ 0 1 ] ) ; hold
q=semi logx (StdQ ) ; s e t (q , ’ Color ’ , ’ blue ’ ) ;
l=legend ( ’ o f f e r stdev ’ , ’ r e sponse stdev ’ ) ;
s e t ( l , ’ Pos i t ion ’ , [ 0 . 5 6 0 .78 0 .3 0 . 1 ] )

case ’ tab le ’
pbar=mean(OutP ) ; d i s p l ay ( pbar )
qbar=mean(OutQ ) ; d i sp l ay ( qbar )
pstd=std (OutP ) ; d i sp l a y ( pstd )
qstd=std (OutQ ) ; d i s p l a y ( qstd )

end

B.2 Two-dimensional spatial ultimatum game

c l e a r a l l ; c l c
t i c

% Parameters
n=100; % g r i d s i z e
m=10ˆ3; % # of gene ra t i on s
w=1; % s e l e c t i o n s t r ength
x =0.001; % mutation f a c t o r
output=’ chart ’ ;
s amp l e s t a r t =10ˆ4;
sample in t =10ˆ3;

% I n i t i a l s t r a t e g i e s
P1=rand (n ) ; % poposer
Q1=rand (n ) ; % responder

% Play game through m gene ra t i on s
f o r k=1:m
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% GAME

% Proposer s t r a t e g i e s o f ne ighbours
P2=P1 ( : , [ n 1 : n−1 ] ) ; % l e f t
P3=P1 ( : , [ 2 : n 1 ] ) ; % r i g h t
P4=P1 ( [ n 1 : n− 1 ] , : ) ; % above
P5=P1 ( [ 2 : n 1 ] , : ) ; % below

% Responder s t r a t e g i e s o f ne ighbours
Q2=Q1 ( : , [ n 1 : n−1 ] ) ; % l e f t
Q3=Q1 ( : , [ 2 : n 1 ] ) ; % r i g h t
Q4=Q1 ( [ n 1 : n− 1 ] , : ) ; % above
Q5=Q1 ( [ 2 : n 1 ] , : ) ; % below

% Fi tne s s
F1 = ( f l o o r (P1−Q2)+1).∗(1.−P1 ) . . .

+ ( f l o o r (P1−Q3)+1).∗(1.−P1 ) . . .
+ ( f l o o r (P1−Q4)+1).∗(1.−P1 ) . . .
+ ( f l o o r (P1−Q5)+1).∗(1.−P1 ) . . .
+ ( f l o o r (P2−Q1)+1).∗P2 . . .
+ ( f l o o r (P3−Q1)+1).∗P3 . . .
+ ( f l o o r (P4−Q1)+1).∗P4 . . .
+ ( f l o o r (P5−Q1)+1).∗P5 ; % middle

F2=F1 ( : , [ n 1 : n−1 ] ) ; % l e f t
F3=F1 ( : , [ 2 : n 1 ] ) ; % r i g h t
F4=F1 ( [ n 1 : n− 1 ] , : ) ; % up
F5=F1 ( [ 2 : n 1 ] , : ) ; % down

% SELECTION
F=[F1 ( 1 : n ˆ 2 ) ; F2 ( 1 : n ˆ 2 ) ; F3 ( 1 : n ˆ 2 ) ; F4 ( 1 : n ˆ 2 ) ; F5 ( 1 : n ˆ 2 ) ] ’ ;
F=1−w+w∗F;
prob=F. / kron (sum(F, 2 ) , ones ( 1 , 5 ) ) ;
prob ( i snan ( prob ))=1/5;
odds=cumsum( prob , 2 ) ;
random=kron ( rand (n ˆ2 ,1 ) , ones ( 1 , 5 ) ) ;
[ c , r ]= f i n d ( ( odds−random) ’>=0);
A1=[ r c ] ;
[ idx1 , idx2 ]= unique (A1 ( : , 1 ) , ’ f i r s t ’ ) ;
A2=A1( idx2 , : ) ;
s e l e c t i o n=reshape (A2 ( : , 2 ) , n , n ) ;
Ps = ( s e l e c t i o n ==1).∗P1 + ( s e l e c t i o n ==2).∗P2 . . .

+ ( s e l e c t i o n ==3).∗P3 + ( s e l e c t i o n ==4).∗P4 . . .
+ ( s e l e c t i o n ==5).∗P5 ;

Qs = ( s e l e c t i o n ==1).∗Q1 + ( s e l e c t i o n ==2).∗Q2 . . .
+ ( s e l e c t i o n ==3).∗Q3 + ( s e l e c t i o n ==4).∗Q4 . . .
+ ( s e l e c t i o n ==5).∗Q5;

% OUTPUT
switch output

case ’ chart ’
c a x i s ( [ 0 1 ] )
a=mean2( Ps ) ;
b=mean2(Qs ) ;
subp lot ( 1 , 2 , 1 ) ; image ( Ps∗64)
a x i s o f f square
t i t l e ( { [ num2str ( k ) , ’ generat ions ’ ] ; [ ’ mean o f f e r = ’ , num2str ( a , 3 ) ] } )
subp lot ( 1 , 2 , 2 ) ; image (Qs∗64)
a x i s o f f square
t i t l e ( [ ’ mean response = ’ , num2str (b , 3 ) ] )
pause ( 0 . 0 0 1 )

case ’ tab le ’
i f k==samp l e s t a r t

OutP(1)=mean2( Ps ) ;
OutQ(1)=mean2(Qs ) ;

end
i f (k>s amp l e s t a r t )&&(mod(k , sample in t )==0)

OutP( end+1)=mean2( Ps ) ;
OutQ( end+1)=mean2(Qs ) ;

end
end
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% MUTATION
mutateP=(x/2)∗(1−2∗ rand (n ) ) ;
mutateQ=(x/2)∗(1−2∗ rand (n ) ) ;
Pm=min (max( Ps+mutateP , 0 ) , 1 ) ;
Qm=min (max(Qs+mutateQ , 0 ) , 1 ) ;

% Next Generation
P1=Pm;
Q1=Qm;

end
toc

% Display
switch output

case ’ chart ’
f p r i n t f ( ’ mean proposer s t r a t e g y = %f \n ’ , a )
f p r i n t f ( ’ mean proposer s t r a t e g y = %f \n ’ , b )

case ’ tab le ’
pbar=mean(OutP ) ; d i s p l ay ( pbar )
qbar=mean(OutQ ) ; d i sp l ay ( qbar )
pstd=std (OutP ) ; d i sp l a y ( pstd )
qstd=std (OutQ ) ; d i s p l a y ( qstd )

end

B.3 Cost and refusal

c l e a r a l l ; c l c
t i c

% PARAMETERS
% Populat ion
n=100; % p l ay e r s
m=100∗n ; % i n t e r a c t i o n s per gene ra t i on
g=10ˆ4; % gene ra t i on s
% Game Dynamics
r =0.5 ; % b l a c k b a l l p r o b a b i l i t y
co s t =0.2 ; % cos t o f i n t e r a c t i o n
% S e l e c t i o n
conf =0.9 ; % con f idence
% Mutation
x =0.005; % mutation f a c t o r
% Output
output=’ chart ’ ;
s amp l e s t a r t =10ˆ4;
sample in t =10ˆ3;

% S e l e c t i o n s c a l i n g
Range=bino inv ( conf ,m,2/ n ) ;
xmin=Range∗(− co s t ) ;
xmax=Range ;
ymin=0;
ymax=Range ;

% I n i t i a l s t r a t e g i e s
P=rand (1 , n ) ; % proposer
Q=rand (1 , n ) ; % responder

% Play game through g gene ra t i on s
f o r k=1:g

% INITIALISE FITNESS VECTOR AND BLACKBALL MATRIX
F=ze ro s (1 , n ) ;
B=ze ro s (n ) ;

% GAME through m i n t e r a c t i o n s
f o r i =1:m
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% Randomly choose p l ay e r s
a=c e i l (n∗ rand ) ; % proposer
b=c e i l (n∗ rand ) ; % responder
whi l e b==a ; b=c e i l (n∗ rand ) ; end % can ’ t play y o u r s e l f

% Wil l they play
% Only p o s s i b l e to s co r e i f not b l a c k b a l l e d
i f B(a , b)==1

game=0;
e l s e game=1;
end

% Payof f s
F( a)=F( a)+game∗ f l o o r ( (P( a)−Q(b))+1)∗(1−P( a)− co s t ) ;
F(b)=F(b)+game∗ f l o o r ( (P( a)−Q(b))+1)∗(P( a)− co s t ) ;

% Blackba l l with p r o b a b i l i t y b
% I f p r e v i o u s l y b l a c k b a l l e d − remain b l a c k b a l l e d
i f game==1

B(a , b)= f l o o r (P( a)−Q(b))∗−1∗( c e i l ( r−rand ) ) ;
B(b , a)=B(a , b ) ;

end
end

% SELECTION
F=(ymax−ymin )/ (xmax−xmin )∗ (F−xmin)+ymin ; % l i n e a r s c a l i n g
F(F<0)=0;
prob=F/sum(F ) ;
prob ( i snan ( prob ))=1/n ;
odds=cumsum( prob ) ;
random=rand (1 , n ) ;
f o r i =1:n

s e l e c t i o n ( i )= f i n d ( odds>=random ( i ) , 1 ) ;
Ps ( i )=P( s e l e c t i o n ( i ) ) ;
Qs( i )=Q( s e l e c t i o n ( i ) ) ;

end

% OUTPUT
switch output

case ’ chart ’
OutP( k)=mean( Ps ) ;
OutQ( k)=mean(Qs ) ;
StdP ( k)=std ( Ps ) ;
StdQ( k)=std (Qs ) ;

case ’ tab le ’
i f k==samp l e s t a r t

OutP(1)=mean( Ps ) ;
OutQ(1)=mean(Qs ) ;

end
i f (k>s amp l e s t a r t )&&(mod(k , sample in t )==0)

OutP( end+1)=mean( Ps ) ;
OutQ( end+1)=mean(Qs ) ;

end
end

% MUTATION
mutateP=(x/2)∗(1−2∗ rand (1 , n ) ) ;
mutateQ=(x/2)∗(1−2∗ rand (1 , n ) ) ;
Pm=min (max( Ps+mutateP , 0 ) , 1 ) ;
Qm=min (max(Qs+mutateQ , 0 ) , 1 ) ;

% NEXT GEN
P=Pm;
Q=Qm;

end
toc

% Display
switch output
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case ’ chart ’
f i g u r e 1 = f i g u r e ( ’ Color ’ , [ 1 1 1 ] ) ;
p=semi logx (OutP ) ; s e t (p , ’ Color ’ , ’ red ’ ) ; yl im ( [ 0 1 ] ) ; hold
q=semi logx (OutQ ) ; s e t (q , ’ Color ’ , ’ blue ’ ) ;
l=legend ( ’ mean o f f e r ’ , ’ mean response ’ ) ;
s e t ( l , ’ Pos i t ion ’ , [ 0 . 5 6 0 .78 0 .3 0 . 1 ] )
s e t ( l , ’ f o n t s i z e ’ , 1 2 )
f i g u r e 2 = f i g u r e ( ’ Color ’ , [ 1 1 1 ] ) ;
p=semi logx ( StdP ) ; s e t (p , ’ Color ’ , ’ red ’ ) ; yl im ( [ 0 1 ] ) ; hold
q=semi logx (StdQ ) ; s e t (q , ’ Color ’ , ’ blue ’ ) ;
l=legend ( ’ o f f e r stdev ’ , ’ r e sponse stdev ’ ) ;
s e t ( l , ’ Pos i t ion ’ , [ 0 . 5 6 0 .78 0 .3 0 . 1 ] )
s e t ( l , ’ f o n t s i z e ’ , 1 2 )

case ’ tab le ’
pbar=mean(OutP ) ; d i s p l ay ( pbar )
qbar=mean(OutQ ) ; d i sp l ay ( qbar )
pstd=std (OutP ) ; d i sp l a y ( pstd )
qstd=std (OutQ ) ; d i s p l a y ( qstd )

end

B.4 Spatial replictor equation in one space dimension

c l e a r a l l ; c l c
t i c

% Parameters and Grid
h=0.49;
l =0.02;
D=0.5; % d i s p e r s a l r a t e / d i f f u s i o n constant
nt =1000; % # of time s t ep s
nx=400; % # of space ( x ) s t ep s
tmax=10; % time end point
xmax=100; % space end po int

% Grid
dt=tmax/( nt−1); % time step s i z e
dx=xmax/(nx−1); % space s tep s i z e
r=D∗dt /( dx ) ˆ 2 ; %r2=1−2∗r ;

% S t a b i l i t y
d i s p l ay ( r ) ;

% Create Matr ices with i n i t i a l c o n d i t i o n s
P1=ze ro s (nx , nt ) ; P2=ze ro s (nx , nt ) ;
P in i t=ze ro s ( 1 , 3 ) ; count =1;
whi l e s i z e ( Pin i t ,1)<nx

p1=rand ; p2=rand ;
i f p1+p2<=1;

P in i t ( count ,1)= p1 ;
P in i t ( count ,2)= p2 ;
P in i t ( count ,3)=1−p1−p2 ;
count=count +1;

end
end
P1( : , 1 )= Pin i t ( : , 1 ) ; P2( : , 1 )= Pin i t ( : , 2 ) ;
%[ P in i t sum( Pin i t , 2 ) ]

% Forward time marching − No boundary c o n d i t i o n s as on a r ing
f o r j =2: nt % time index

f o r i =1:nx % space ( x ) index

f1=P1( i , j −1)∗(( l −1)∗P2( i , j−1)+(h−l )∗(1−P1( i , j − 1 ) ) . . .
+P1( i , j −1)∗P2( i , j −1)) ;

f 2=P2( i , j−1)∗(−h∗P1( i , j−1)+P1( i , j −1)∗P2( i , j −1)) ;

i f i==1
P1( i , j ) = . . .

P1( i , j−1)+dt∗ f 1 . . .
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+r ∗(P1( i +1, j−1)−2∗P1( i , j−1)+P1(nx , j −1)) ;
P2( i , j ) = . . .

P2( i , j−1)+dt∗ f 2 . . .
+r ∗(P2( i +1, j−1)−2∗P2( i , j−1)+P2(nx , j −1)) ;

e l s e i f i==nx
P1( i , j ) = . . .

P1( i , j−1)+dt∗ f 1 . . .
+r ∗(P1(1 , j−1)−2∗P1( i , j−1)+P1( i −1, j −1)) ;

P2( i , j ) = . . .
P2( i , j−1)+dt∗ f 2 . . .
+r ∗(P2(1 , j−1)−2∗P2( i , j−1)+P2( i −1, j −1)) ;

e l s e
P1( i , j ) = . . .

P1( i , j−1)+dt∗ f 1 . . .
+r ∗(P1( i +1, j−1)−2∗P1( i , j−1)+P1( i −1, j −1)) ;

P2( i , j ) = . . .
P2( i , j−1)+dt∗ f 2 . . .
+r ∗(P2( i +1, j−1)−2∗P2( i , j−1)+P2( i −1, j −1)) ;

end

end % space ( x )
end % time

%P3=1−P1−P2 ;
toc

f i g u r e s u r f r (P1)
f i g u r e s u r f f (P2)
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